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Three theoretical models were advanced for the dynamics of  molecular multi- 
photon excitation: (i) The zero-order optically active mode connected by 
intramolecular random anharmonic couplings to a background manifold. (ii) 
Molecular eigenstates coupled by random radiative transition dipole moments. 
(iii) The kinetic master equation approach. It is demonstrated that in the 
Markoffian limit, as long as the intramolecular vibrational relaxation width 
is small relative to the Rabi frequency, these three approaches are equivalent. 
In the case of  high-field excitation, coherent quantum effects are exhibited 
even in a randomly coupled system. Resurrection of the quantum oscillations 
and coherent pumping can be exhibited in intense field excitation on the time 
scale of  intramolecular vibrational relaxation. 
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1. Introduction 

High-order mult iphoton excitation (MPE) of intermediate and large molecules 
has been intensively investigated both experimentally and theoretically [1-3]. A 
central concept pertinent to the MPE of large molecules is the molecular quasicon- 
t inuum (QC) [4, 5]. Above a certain energetic threshold the density of  the 
molecular (vibrational) states becomes exceedingly large [6]. The zero-order 
states are no longer adequate for the description of intramolecular dynamics and 
interlevel coupling has to be explicitly considered. An appropriate description 
of the extremely congested dense level structure can be provided in terms of the 
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nuclear molecular eigenstates (NMEs) [7-9]. Experimental information [5, 10] 
regarding the dependence of the photofragmentation yield on the laser pulse 
energy (fluence) provides overwhelming evidence that incoherent dynamics 
prevails for the MPE of the molecular QC, whereupon all phase memory effects 
are eroded. 

Two distinct approaches were advanced for the description of incoherent MPE 
of large molecules. One approach [11-14] rests on the notion of intramolecular 
vibrational energy redistribution (IVR), where successive absorption and stimu- 
lated emission of single photons were assumed to take place. An alternative 
description rests on the idea that the radiative coupling between the molecular 
vibrational-rotational eigenstates in the QC are essentially random functions of 
the quantum numbers of the molecular eigenstates [ 15-17]. This random coupling 
model leads to erosion of coherence effects and results in a master equation for 
the evolution of the probability distribution for the number of photons absorbed, 
evading the issue of the IVR. The results of numerical simulations [17] demon- 
strate that random radiative coupling results in the total erosion of phase coher- 
ence effects. In this treatment, the Markoffian condition entered implicitly is 

>> I l /h, (1) 
where rWR is the time associated with the intramolecular vibrational energy 
redistribution and e is the electric field amplitude associated with the infrared 
(IR) absorption within the optically active mode. At very intense radiation fields 
the Markoffian condition, Eq. (1), breaks down and novel physical features of 
MPE of the QC are expected to be exhibited. 

In this paper we explore some of the features of the MPE of a molecular QC, 
which is driven by medium-intensity and high-intensity laser fields. Random 
coupling models are extremely useful for the description of intramolecular 
dynamics in general and in particular for the elucidation of molecular MPE 
mechanisms, which are induced by medium-intensity laser fields. In this context, 
two models will be considered: (i) The random radiative coupling model (RRCM) 
where random radiative coupling prevails between NMEs. (ii) The intramolecular 
random coupling model (RCM) with constant radiative coupling between zero- 
order states. The relation between the predictions of these two models will be 
established within the validity range of the Markoffian condition, Eq. (1). These 
results are isomorphous to the predictions based on the kinetic master equation. 
Next, we shall proceed to discuss the intramolecular dynamics within the QC at 
extremely intense radiation fields, which render the Markoffian condition, Eq. 
(1), inapplicable. Within this limit, coherent pumping of the QC will be exhibited 
and quantum oscillations will be resurrected. 

2. The Markoflian limit 

Figure 1 portrays complementary models for the description of the MPE in the 
QC. These are simplified model systems for the MPE process, which incorpor- 
ate all the physically relevant ingredients for the problem at hand. We shall 
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Fig. 1. A comparison between two molecular models. 
(a) Zero-order molecular levels with a single optically 
active mode and with unharmonic interactions. (b) Exact 
molecular eigenstates with diluted random radiative 
couplings 
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simplify the conventional molecular model for MPE by placing the low-lying 
sparse level energetic regime by a single discrete level Is) and the QC by the two 
sets of levels, {I/)} and {Ira)} (Fig. 1). The radiative coupling elements are/z~l and 
/z,,. The Markoffian assumption, Eq. (1), allows us to disregard the systematic 
variations of/zs~ and tzt,, with the molecular indices l and m. Fig. la portrays 
the intramolecular and the radiative coupling scheme in the zero-order molecular 
basis set for the simple case where a single mode is optically active. Consider 
first the radiative coupling. At each level of excitation, vibrational states are 
selectively radiatively coupled to states located at the higher level. Thus, each 
zero-order state is radiatively coupled to a single higher zero-order state, which 
corresponds to a change of one quantum in the optically active mode with no 
change in the other modes. The radiative coupling matrix elements/2e, appearing 
in Fig. la, correspond to the dipole matrix elements/2, which connect (zero-order) 
states corresponding to the optically active modes. The /2 terms are therefore 
weakly dependent of the level indices and can be taken as constant for each two 
consecutive manifolds. Next, the intramolecular coupling is considered. At each 
level of excitation, the zero-order molecular states are coupled by an 
intramolecular perturbation which corresponds to the anharmonicity and to 
off-diagonal kinetic energy contributions. This coupling Wkc, Fig. la, induces the 
intramolecular vibrational relaxation (that is intramolecular dephasing) between 
the state fk) of the zero-order active mode and {Ic)} of the inactive mode. The 
characteristic time for the dephasing process is [15, 18] 

rIVR = ~l/Fk (2) 

where 

r~ = 2~( WL)pk. (3) 

Pk is the density of states of the vibrational background at the energy level of k 
absorbed photons. (W{c) is the averaged expression of W2c. Fk and corresponds 
to the energetic width of the IR absorption line shape of a molecule pre-excited 
into the QC. The intramolecular coupling terms connecting zero-order states of 
the QC are taken as random functions of the zero-order level indices. An RCM 
for IVR was previously considered by several groups [19-21]. We can thus assert 
that this model, which rests on the zero-order molecular basis, Fig. la, involves 
random intramolecular coupling and approximately constant radiative coupling. 



326 I. Schek and J. Jortner 

An alternative approach previously advanced by us [15-17] considers random 
radiative coupling between molecular eigenstates, resulting from diagonalization 
of  the total molecular Hamiltonian, which includes the interaction { Wkc}. The 
manifolds {ll)} and {Im)}, Fig. lb, constitute linear combinations of the zero-order 
states appearing in Fig. la. The consequences of the transformation between the 
zero-order basis and the molecular eigenstates basis regarding the latter are: (a) 
The intramanifold intramolecular coupling Wkc no longer appears and only 
radiative coupling prevails. (b) The radiative coupling between adjacent mani- 
folds of molecular eigenstates is non-selective. (c) The radiative dipole coupling 
terms can be taken as a random function of  the level indices. (d) Conservation 
of integrated absorption intensities implies that level scrambling results in the 
"di lut ion" of  the (constant) radiative coupling terms/2, which couple zero-order 
molecular eigenstates. It is expected that in general/z <<//. To derive the relation 
between the radiative coupling terms in both representations one looks for the 
radiative coupling/~1,, in the NME representation. Since it is assumed that the 
only radiatively active zero-order set is {[k)}, then 

= (ce,) C~m/Zkk' (4) 

where a~ is the amplitude of  the contribution of the zero-order state [k) in the 
expansion of  the NME [l). In order to evaluate the radiative width of the I1) ~ I m) 
transition, one should average the square of  [Zlm over the statistical distribution. 
Since the values of { Wk~} are considered to be random numbers, then the values 
of  the coefficients {a k} are also taken to be random functions of the level indices. 
Accordingly, the radiative coupling terms {/XZm} of the NME basis are also random 
functions of the level indices. One then introduces the dilution factor for 
intramolecular coupling [16, 17] 

Dk 2 1  T i t 2  ~ 2 
= ~r ~ W k c ~ P k  = z r F k P k / 2 .  (5) 

From Eqs. (4) and (5), we obtain the relation between the (properly averaged) 
second moment (/z 2) for the random radiative coupling in the molecular eigen- 
states basis and the value of  ]/Zl 2 associated with an optically active mode in the 
zero-order molecular basis, which is given by 

(/x 2) = [/212/(~rFp/2). (6) 

Equation (6) establishes the relation between the variance of the diluted transition 
moments (/z 2) and the transition moments connecting the (zero-order) active 
modes. 

To establish the relation between the RRCM (Fig. lb) and the intramolecular 
RCM with the constant radiative coupling between zero-molecular states (Fig. 
la), some numerical computer simulations were performed. Each zero-order 
molecule manifold consisted of two equally spaced levels. The density of  states 
was taken as p = 1. The zero-order transition moments, /x, were all taken to be 
constant, while { Wk~} was chosen to be random (with (Wkc)= 0), and F was 
determined from Eq. (3). (/z 2) was then calculated from Eq. (6). The diluted 
radiative coupling terms tzst and /ztm were subsequently determined for the 
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Fig. 2(a). Time evolution for the models described 
in Fig. 1. p,(t = 0) = 1 in all cases. Each manifold 
consists of 70 levels with p = 1. Full line: time 
evolution based on the coupling scheme from 
Fig. l(a), /x = 0.6~r between all levels and W is 
taken to be Gaussian with ( IV} = 0 and ( W 2) = 3. 
Dashed line: time evolution based on the coup- 
ling scheme from Fig. l(b). ~ is Gaussian with 
(/.Q = 0 and (~2e2) = 0.12. F = lO/2e 
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Fig. 2(b). Same as for Fig. 2(a). t2e =x/30, 
(/~2E2) = 1.0, Y = 3.5~e 
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radia t ive  R C M  taking  (/z) = O [17]. The re levant  pa rame te r s  were chosen  so that  
F >  I/2[e, which  is in accord  with the Markoff ian  condi t ion ,  Eq. (1). 

F igure  2 conf ron ts  the  t ime evolu t ion  for  the  two mode l s  ca lcu la ted  for  different  
rat ios  o f  tZe /F  (F = 10/2e and  3.5/2e).  F r o m  these results  we infer  that  in the  
Markoff ian  l imit ,  i.e. F/ tZe >> 1, the results  for  the  R C M  and  R R C M  mode l s  are 
p rac t i ca l ly  ident ica l .  In  Fig. 3, the mode l  b a s e d  on  the i n t r amolecu l a r  R C M  is 
con f ron t ed  with a k inet ic  so lu t ion  rest ing on the a s sumpt ion  o f  the va l id i ty  of  
the mas te r  equa t ion  for  the popu la t ions  o f  the  energy " b o x e s "  [ 15]. The numer ica l  
pa rame te r s  are  the same as for  Fig. 2. We  no t iced  that ,  s ince the  energet ic  sp read  
o f  the  quas i con t inuum man i fo id  is final, there  is a de lay  in the  g r o u n d  level 
p o p u l a t i o n  in bo th  mode ls ,  (i) and  (ii). This final man i fo ld  i ncuba t ion  effect is 
exh ib i ted  in the  non -exponen t i a l  decay  for  the  shor t  t imes,  when  t << hp, and  the 
co r r e spond ing  de lay  o f  the  feeding  of  exc i ted  states. F r o m  agreemen t  be tween  
the t ime evo lu t ion  for  the three  mode l s  (Figs.  2 and  3), we conc lude  that :  

(1) The dynamics  of  a sys tem descr ibed  by  an in t r amolecu la r  R C M  with cons tan t  
rad ia t ive  coupl ing  (Fig.  l a )  results  in a t ime evolu t ion  which  is qui te  s imi lar  to 
the  result  ob t a ined  for  the  rad ia t ive  R C M  (Fig. lb ) .  The smal l  difference be tween  
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Fig. 3(a). Time evolution for the intramolecular 
RCM (full line) and for the kinetic model (dashed 
line). The numerical parameters are the same as 
for Fig. 2(a). F = 10/2e 
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Fig. 3(b). Time evolution for the intramolecular 
RCM (full line) and for the kinetic model (dashed 
line). The numerical parameters are the same as 
for Fig. 2(b). F = 3.5/2e 

the two evolution pathways displayed in Fig. 2 results from the approximation 

involved in Eq. (5). 
(2) The time evolution of  a system, where random coupling prevails, is essentially 
determined by the lower moments  of  the distribution function of  the relevant 
(radiative or intramolecular) coupling elements. 
(3) The "coarse graining" argument utilized in the derivation of the dilution 

effect, Eq. (6), is justified. 

(4) As long as the Markoffian condition F >  [/2[e holds, it is expected that the 
three models (i), (ii) and (iii), are equivalent, yielding practically identical results 

for the time evolution of  the system. 
(5) The Markoffian condition, Eq. (1), essentially provides a necessary condition 
for the applicability of  the RCM model (ii). In the numerical simulation a diluted 
Rabi frequency, ( ~ [ s  Eq. (6), was assigned to each intercontinuum transition 
in Fig. lb. This procedure is valid as long as the intramolecular line widths 
exceeds the average radiative line width 2"n'(/.t2)eZp originating from the radiative 
coupling between the NMEs.  The condition for the validity of  model (ii), i.e. 

2rr(~2)e2p < r (7) 
results in 

j~le < r/(2,rr)1/2, (8) 
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which is in accord with condition (1). Accordingly, for the intense fields, when 
condition (8) fails, model (it) should not be utilized and model (i) has to be 
preferred. 
(6) Numerical simulations for model (i) will be reliable provided that the radiative 
splitting 21/~le of the "dressed" molecular+radiation field states, together with 
the intramolecular full width 2F, do not exceed the energetic spread of the QC, 

21/-7.1e +2r<~ No -~ (9) 

where p is the density of the QC manifold. It is noted that condition (9) is 
supplementary to the condition F <- Np -1 previously discussed by us [17], which 
requires that the energetic spreads of the model QC manifolds should considerably 
exceed the uncertainty width of the levels. 
(7) For very intense fields, when the Markoffian condition Eq. (1) and the 
technical condition Eq. (9) fails, both the intramolecular RCM and the RRCM 
models, as well as the kinetic model, fail to describe correctly the dynamics of 
the system. 

It has been demonstrated [17] that both random radiative coupling between 
molecular eigenstates or, alternatively, random intramolecular coupling between 
zero-order states in the molecular QC is essential in eroding the effects of  phase 
coherence in the MPE of a large molecule. The equivalence between the RCM 
(Fig. la) and the intramolecular RCM (Fig. lb) inspires confidence in the validity 
of the random coupling approach [16, 17] for the description of collisionless 
MPE of large'molecules. The present results demonstrate that the simple kinetic 
Pauli master equation is valid for the description of MPE of a molecular QC 
provided that three conditions are simultaneously satisfied: 

(A) Rapid intramolecular dephasing, Eq. (1), is exhibited. 
(B) Random coupling prevails. 
(C) The Rabi frequency is sufficiently low to ensure the applicability of the 

Markoffian limit. 

Several comments are now in order. First, our approach [15, 16] for MPE of a 
QC, which rests on the Markoffian and random coupling assumptions, differs 
from alternative theoretical approaches [ 12-14] which invoked just the Markoffian 
assumption, Eq. (1). The physical condition for rapid intramolecular dephasing, 
Eq. (1), provides a necessary, but not a sufficient, condition for the validity of 
the kinetic Pauli master equation for the MPE of a congested molecular level 
structure. Second, evidence has been provided for the applicability of a master 
equation which corresponds to a random strong intramolecular coupling situation. 
Third, it has been demonstrated that random coupling in collisionless MPE can 
be taken to involve either intramolecular or radiative interactions , depending on 
the choice of the molecular basis. As long as off-resonance intramolecular interac- 
tions between zero-order molecular modes are small, the choice of the molecular 
basis set (in terms of molecular eigenstates or at zero-order states) is merely a 
matter of convenience [21]. 
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3. The breakdown of the Markoflian approximation 

We have considered the Markoffian limit, where random coupling erodes all 
coherence effects. We shall now explore the other extreme situation of  multiphoton 
excitation is extremely intense fields when the Markoffian limit is inapplicable. 
It is expected that for intense fields, when I~ le>  F, coherent quantum effects 
will be exhibited even in the presence of  random intramolecular coupling. In 
order to obtain a quantitative estimate for the laser flux required for the breakdown 
of  the Markoffian condition, Eq. (1), let us take the typical transition moment 
in the low sparse energetic regime to be 1/21 ~0.1 Debye. The Rabi frequency, 
l~--[/21e, induced by the laser flux �9 is given by 

a--I l , (10) 

where c is the light velocity. If  the intramolecular width F is expressed in cm 1 
units then the flux Co, resulting in fI = F, is given by 

qb c = 4.10"[r(cm-1)]2(W cm-2). (11) 

A characteristic width inferred from the line broadening at high levels of vibra- 
tional excitation [22-24] is F~-3 -10cm -]. We thus estimate ~b,~ 
4 x 10 ]2-  4 x 1013 W cm -] for the onset of the breakdown of the Markoffian limit. 
When the QC is excited by very intense fields the effective up-pumping process 
within a specific mode can overcome the IVR process. Provided that I/2le > F, 
both models (i) and (ii) are inapplicable and a new approach is required. In 
order to provide some physical insight into the problem, the model system 
illustrated in Fig. 4 is considered. The two upper discrete levels are characterized 
by the decay widths F2 and F3, respectively, due to their coupling to the isoener- 
getic quasicontinua. These two quansicontinua are radiatively coupled between 
themselves. It is assumed that the level structures of these two QC manifolds are 
prediagonalized and that, in view of the random coupling effects which prevail 
in these energetic regions, all coherent effects are totally eroded. Therefore, the 
changes in these QC manifolds are determined by a kinetic master equation 
with rate constants F45 and F54 (Fig. 4). On the other hand, coherence effects do 
prevail in the excitation of the active mode, which should be described in terms 
of  the complete density matrix for levels I1), 12) and 13). The equation of motion 

1 3 > - - - ~  05>} 
0 

12>----~ - -  114>} 

19007 

[I) 

Fig. 4. A model  for the intense-field excitation of the QC, which consists 
of: (1) a set of  zero-order molecular levels as in Fig. 1 (a) and characterized 
by the decay width {Fk}. (2) A set of  quasicontinua which are radiatively 
coupled between themselves with the rate constants {Fkl} 
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for the nine elements of the three levels of the active mode and for the two 
diagonal elements of the QC are: 

/611 = - - i l l 'P21 -]- ilieP12 

/ 6 1 2  = - -  i12eP22 + i ~ e P n  + iliePl3 -- ~-~ P12 z 

['3 
/613 = --i1~P23-t-  i l iePl  2 - - 7  P13 

F2 
/621 = i ~ e P 2 2 -  i12ePll -- i t ieP31----~ P21 

F3 
/631 = i t2eP32-  il~eP21 -- ~ P31 

/622 = - - i t ~ e P l 2 -  il~eP32 + il2eP21 -t- il~ep23 --F2p22 

/633 = - ilieP23 + ilJ, eP32 -- F3033 

/623 = --il~ePI2 -- il~eP.33 "4- it2ep2z 
F2+F3 

P23 

/632 = i~eP31 4- i~ep33 -- it~eP22 
F2 + F3 

2 p32 

/644 ---- F2P22 + F54P55 - F45P44 

/655 = 1"3033 q- F45P44 - F54p55. (12) 

The intercontinua widths a r e  F45 and F54 , corresponding to the kinetic rate 
constants which are obtained by kinetic assumptions [15, 25]. 

For weak fields ([file <F ) ,  the results of the numerical solution of Eq. (12) are 
identical with those obtained from models (i) and (ii), as well as from the kinetic 
model of  Sect. 2. For the very strong field limit (I/21e >>F), Eq. (12) has to be 
utilized to account for the evolution of the level populations. Figs. 5 and 6 show 
the time evolution of the population of the ground state for the cases /2e = 5F 
and kZe = 9.2, respectively. An oscillatory pattern is exhibited, being characterized 
by the frequency - 1.4/2e. These oscillations decay non-exponentially. This picture 
resembles the pattern of the optical free induction decay (OFID) of a molecular 
level which is coherently prepared by a C.W. laser beam [26]. It should be noted, 
however, that in the OFID an ensemble of molecules is considered, whereas in 
the present case an isolated molecule is driven by the intense field. 

Since the levels of the active mode decay irreversibly into the corresponding QC, 
their dynamics can be analyzed independently. It is possible to represent the time 
evolution of the active mode by the effective Hamiltonian formalism [27]. The 
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Fig. 6. The evolution of the ground level popu- 
lation based on the coupling scheme of Fig. 
4: f i e  = 9 . 2 F  

time evolution is then determined by the roots of the effective Hamiltonian secular 
equation, 

E - / F / 2  o I E-iF~2 =0 (13) 

~Ze 

The solutions of this cubic equation are discussed in Appendix A and are 
compared with the results of the numerical simulations. One limitation of the 
solution of  Eq. (13) is that the populations of the QC are not explicitly considered. 
However, the population of  the acive modes, including the ground state, obtained 
from the effective Hamiltonian, Eq. (13), and from the equations of motion, Eq. 
(12), should be identical. 

Appendix A provides the solution of Eq. (13) for the population of the ground 
state in the strong field limit ([/.Z [e >> F). According to Eq. (A11) the fundamental 
oscillation frequency is ~/2/2e, which cannot be resolved from the overtone of 
the V~/2e frequency. This analysis shows that the ground level population decays 
non-exponentially as a combination of three distinct exponentials with the time 
constants 2F - l ,  (4/3)F -1 and (8/5)  -1. This analysis bears a close analogy to the 
case of the irreversible leakage from the uppermost level of the sparse energetic 
region into the QC under the extreme condition [28] F >>/ze. On the basis of both 
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the analytical and the numerical results, we conclude that the quantum oscillations 
are expected to be exhibited on the time scale F -1. At longer times, these 
oscillations are eroded by the IVR process. 

4. Concluding remarks 

From the present analysis several interesting conclusions emerge. First, the 
numerical simulations demonstrate that in the high fields, when the non- 
Markoffian limit applies, the kinetic master equation is inapplicable. Second, 
coherent quantum effects are exhibited in a randomly coupled system at high 
fields. Third, the resurrection of the quantum oscillation in high fields signals 
the limit where the Rabi frequency overcomes the IVR rate. Fourth, coherent 
pumping can be exhibited in an intense-field excitation on the time scale of 
intramolecular vibrational relaxation - F  -1. Fifth, this opens up the distinct 
possibility of photo-selective excitation of  a single mode in the QC in intense 
fields. Sixth, the observation of such quantum oscillations in the excitation of 
the QC will provide new spectroscopic information on transition moments com- 
bining photoselective states. In order to realize photoselective excitation in high 
fields, the following condition is suggested, 

F </2e < 3'c, (14) 

where 3'c denotes the reactive rate within a high-energy genuine intra-molecular 
continuum. The left-side inequality concerns the existence of quantum oscilla- 
tions. The right-side inequality assures that the dominant decay rate will involve 
the reactive channel, which will dominate over the IVR process. 

Appendix A: Solution of the three level secular equation 

The determinant of Eq. (13) is expanded, giving 

X 3 -~- 2h2y + h (3'2+ 2/2282) + 3'/22e2 = 0 

where 

E = - i X ;  3' = r / 2 .  

The following notations for the cubic equation [29] will be used, 

q = (2/3 - 32/9)/22e 2 

r = ( a / 6 +  aa/27)/23e 3 

where the ratio a is defined by 

a = 3'//2e 

and the discriminant d is defined by 

d = q3+ r 2 = / 2 6 E 6 ( 8  _ 1332/4+ 0/4)/27. 

(A1) 

(A2) 

(A3a) 

(A3b) 

(A4) 

( a s )  
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The fol lowing auxil iary terms are defined, 

$1 = ( r + dl/2) 1/3 

S2 = ( r -  dl/2) 1/3 (A6) 

AI = ($1 + $2) - 2cq2e/3 (A7) 

A2,3 = - 1/2(Sx + $2) - 2aloe~3 • ix/3/2(S~ - $2). 

In  the present  case d is always positive (otherwise a will be complex).  Con-  

sequently,  there are always one real (decaying) term and  two conjugate  (oscillatory 
decaying) terms [29]. In  the extremely strong field, a << 1, the roots are given by 

A, --~ - r / 4  (A8) 

A2 ~ - 3 F / 8  + ix/~fLe. (A9) 

Then  the g round  level ampl i tude  C1 is 

C~ = A exp ( ' F t / 4 ) + e x p  ( - 3 F t / 8 ) [ B  exp ( iv /2f ie t )+ C exp (-ix/212et)] 
(AIO) 

and  the g round  level popu la t i on  is 

pH(t)-Icl(t)l  2 = Ial  2 exp  ( - r t / 2 )  

+ exp (-3rt/4){Inl ~ +1c[2 + 2 Re [BC* exp (i2x/~12et)]} 

+ exp ( - 5 F t / 8 ) 2  Re {A*[B exp (ix/2t2et)+ C exp (-ix/212et)]}. 
( A l l )  

Hence,  PH is a combina t ion  of decaying exponent ia ls  modula ted  by oscil latory 
terms. The oscil latory f requencies  are (2)1/2/2e and  2(2)1/2/2e and  the exponent ia l  

rates are F /2 ,  3F /4  and  5F/8.  
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